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Abstract

Let Ln½f � denote the Lagrange interpolation polynomial to a function f at the zeros of a

polynomial Pn with distinct real zeros. We show that

f � Ln½f � ¼ �PnHe
H½f �
Pn

� �
;

where H denotes the Hilbert transform, and He is an extension of it. We use this to prove

convergence of Lagrange interpolation for certain functions analytic in ð�1; 1Þ that are not
assumed analytic in any ellipse with foci at ð�1; 1Þ:
r 2004 Elsevier Inc. All rights reserved.
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1. Introduction and results

Let Pn be a polynomial of degree n with distinct real zeros, and given a function f

defined at least on these zeros, let Ln½f � denote the Lagrange interpolation
polynomial to f at the zeros of Pn: Analysis of the error f � Ln½f � depends on a
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suitable representation of it [1,4,6]. For functions analytic in a simply connected set
containing the zeros of Pn; one can use Hermite’s contour integral error formula. For
functions with sufficiently many derivatives, one can use integral forms of the
remainder. The latter may even be formulated for functions without derivatives in
terms of divided differences. When the interpolation points are zeros of orthogonal
polynomials, one can use special identities [3].
In this note, we present a representation for the error involving the Hilbert

transform. As far as we can determine it is new, although for a very long time the
Hilbert transform has been used in studying Lagrange interpolation (for example,
see [3]). Then we use this to study convergence of Lagrange interpolation for
functions whose Hilbert transform vanishes in the interval, say ð�1; 1Þ; containing
the interpolation points. This forces analyticity of the function in most of the plane.
However, it does allow functions that are not analytic in an ellipse with foci at
ð�1; 1Þ—the traditional hypothesis in studying Lagrange interpolation of analytic
functions, when the interpolation points lie in ð�1; 1Þ:
Given a function fAL1ðRÞ; its Hilbert transform is defined for a.e. xAR by

H½f �ðxÞ ¼ 1
p

PV

Z
N

�N

f ðsÞ
s � x

ds:

Here PV denotes Cauchy principal value. The Hilbert transform is a bounded
operator on LpðRÞ; if p41: That is, there exists Cp depending only on p such that for

all fALpðRÞ;
jjH½f �jjLpðRÞpCpJf JLpðRÞ: ð1Þ

Moreover, �H3H is the identity. That is, if p41 and fALpðRÞ; then for a.e. x;

H3H½f �ðxÞ ¼ �f ðxÞ: ð2Þ
See for example [5, Chapter 5]. When f has finitely many non-integrable

singularities, say at a1; a2;y; am; but is integrable in R\
Sm

j¼1 ðaj � e; aj þ eÞ for
each e40; we extend the definition of H as a principal value integral. Set a0 ¼ x and
if xefa1; a2;y; amg; define

He½f �ðxÞ ¼
1

p
lim

ej-0þ

Z
R\
Sm
j¼0

½aj�ej ;ajþej �

f ðsÞ
s � x

ds;

where the limit is taken as each ej-0þ; 0pjpm; independently. If this limit exists,

the extended transform is well defined at x: With this extension, we prove:

Theorem 1. Let nX1; and Pn be a polynomial of degree n with n distinct real zeros. Let

p41 and let fALpðRÞ: Assume moreover that the inversion formula (2) is valid at every

zero of Pn: Let U be a polynomial of degree at most n and S be a polynomial of degree

at most n � 1: Then for a.e. x;

Uf � Ln½Uf � ¼ �PnHe
UH½f � � S

Pn

� �
: ð3Þ
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Remarks. (a) Note that since fALpðRÞ; also H½f �ALpðRÞ: Then the inversion
formula (2) is valid a.e. Our hypothesis is that (2) holds at each zero x of Pn: If in
addition, f satisfies a Lipschitz condition of some positive order in a neighbourhood
of each of the zeros of Pn; Privalov’s theorem shows that the same is true of H½f �:
Then the inversion formula (2) holds pointwise in a neighbourhood of each of the
zeros of Pn; so (3) does also. In particular, if f satisfies a local Lipschitz condition
everywhere in R; (3) holds except at the zeros of Pn:

(b) We can weaken the requirement on f : it suffices that fAL logþ LðRÞ for
H½f �AL1ðRÞ:
(c) When U � 1 and S � 0; we obtain

f � Ln½f � ¼ �PnHe
H½f �
Pn

� �
ð4Þ

and hence

Ln½f �ðxÞ ¼ f ðxÞ þ PnðxÞHe
H½f �
Pn

� �
ðxÞ

¼He H½f � PnðxÞ
Pn

� 1
� �� �

ðxÞ;

in view of (2). Of course, PnðxÞ is regarded as constant inside the Hilbert transform.
(d) The idea for the proof comes essentially from [2], where a new representation

was established for the error in Lagrange interpolation of xa; a40: The new twist in
this paper over [2] is the use of singular integrals and invertibility of the Hilbert
transform.

Corollary 2. Let I be a real interval and W : I-R be measurable. Let 1opoN; and

r; sX1 with 1
r
þ 1

s
¼ 1: Let S be a polynomial of degree pn � 1: Then provided

WPnALprðIÞ and ðH½f � � SÞ=PnALpsðRÞ;

jjWðf � Ln½f �ÞjjLpðIÞpCpsjjWPnjjLprðIÞ
H½f � � S

Pn

����
����

����
����
LpsðRÞ

; ð5Þ

where Cps depends only on ps:

Remarks. (a) In particular, if f satisfies a Lipschitz condition of positive order near
each zero of Pn; we see that H½f � � Ln½H½f �� satisfies a Lipschitz condition near each
of the zeros of Pn; so

jjWðf � Ln½f �ÞjjLpðIÞpCpsjjWPnjjLprðIÞ
H½f � � Ln½H½f ��

Pn

����
����

����
����
LpsðRÞ

;

a curious duality result.
(b) Of course the real restriction is that ðH½f � � SÞ=PnALpsðRÞ: Here 1=Pn has

non-integrable singularities at the zeros of Pn; but we can satisfy this by requiring
that H½f � � S vanishes in a neighbourhood of the zeros of Pn—for example in an
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interval I containing the zeros of Pn: This forces analyticity of f in ðC\RÞ,I ; and
explains the hypotheses in the following theorem:

Theorem 3. For nX1; let Pn be a polynomial of degree n with n distinct zeros in

ð�1; 1Þ: Let 1opoN and q ¼ p
p�1: Assume that for each 0oeo1;

lim
n-N

jjPnjjLN½�1þe;1�e�
1

Pn

����
����

����
����
LqðR\½�1;1�Þ

¼ 0: ð6Þ

Let f : ð�1; 1Þ-R be the restriction to ð�1; 1Þ of a function analytic in C\½�1; 1�; with

boundary values a.e. on R\½�1; 1�; from the upper and lower half-planes, that lie in

LqðR\½�1; 1�Þ: Assume moreover, that f has limit 0 at N: Then for each e40;

lim
n-N

jjf � Ln½f �jjLN½�1þe;1�e� ¼ 0: ð7Þ

Remarks. (a) When discussing convergence of Lagrange interpolation for an array
of interpolation points in ð�1; 1Þ and for functions analytic there, one invariably
assumes the function is analytic in a neighbourhood of ½�1; 1�—typically an ellipse
with foci at 71: Theorem 3 allows functions that are not analytic in a
neighbourhood of ½�1; 1�—for example,

f ðxÞ ¼ ð1� x2Þ�a; xAð�1; 1Þ; 0oao1:

(b) Chebyshev polynomials—and more generally Jacobi polynomials—satisfy (6).

We prove the theorems in the next section.

2. Proofs

We begin with

Proof of Theorem 1. Let sAR with PnðsÞa0 and let

hsðxÞ ¼
1

s � x
; xAR\fsg:

Then Ln½Uhs� is a well-defined polynomial of degree pn � 1 that agrees with Uhs at
the zeros of Pn: It follows that U � Ln½Uhs�=hs is a polynomial of degree pn that
vanishes at the zeros of Pn: Then for some constant c;

U � Ln½Uhs�=hs ¼ cPn:

Evaluating both sides at s gives

c ¼ UðsÞ=PnðsÞ:
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So for xas;

UðxÞ
s � x

� Ln½Uhs�ðxÞ ¼
UðsÞ
PnðsÞ

PnðxÞ
ðs � xÞ : ð8Þ

Now, we let

g ¼ H½f �:

Our hypotheses on f ensure that gALpðRÞ and that g is defined a.e. in R:Multiplying

(8) by 1p gðsÞ and integrating in a principal value sense with respect to s over R; gives

for a.e. x;

UðxÞH½g�ðxÞ � Ln½UH½g��ðxÞ ¼ PnðxÞHe
Ug

Pn

� �
ðxÞ:

Note that the interchange of Ln and H on the left is permissible as Ln½Uhs� may be
expressed as a finite linear combination of 1

s�xj
; where x1; x2;y; xn are the zeros of

Pn: Then the right-hand side will be well defined in the sense of the extended
definition of the Hilbert transform given in the introduction. Since the limiting
process defining He gives a finite limit on the left a.e., the same will be true for the
right-hand side. Recalling that a.e.

H½g� ¼ H3H½f � ¼ �f

and that this holds by hypothesis at the zeros of Pn; we obtain for a.e. x;

UðxÞf ðxÞ � Ln½Uf �ðxÞ ¼ �PnðxÞHe
UH½f �

Pn

� �
ðxÞ: ð9Þ

Then (3) will follow if we show that for every polynomial S of degree pn � 1;

He
S

Pn

� �
¼ 0;

except possibly at the zeros of Pn: Since S=Pn is a linear combination of hxj
; j ¼

1; 2;y; n; it suffices to show that

He½ha�ðxÞ ¼ 0; xAR\fag: ð10Þ

But

He½ha�ðxÞ

¼ 1
p
lim
ej-0

Z
R\ððx�e0;xþe0Þ,ða�e1;aþe1ÞÞ

1

ðs � xÞðs � aÞ ds
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¼ 1
p
1

x � a
lim
ej-0

Z
R\ððx�e0;xþe0Þ,ða�e1;aþe1ÞÞ

1

s � x
� 1

s � a

� �
ds

¼ 1
p
1

x � a
lim

ej-0;R-N

Z
½�R;R�\ððx�e0;xþe0Þ,ða�e1;aþe1ÞÞ

1

s � x
� 1

s � a

� � 
ds

þO
1

R

� ��

¼ 1
p
1

x � a
lim

R-N

log
R � x

R þ x

����
����� log R � a

R þ a

����
����

� �
¼ 0:

So we have (10) and the result. &

Proof of Corollary 2. Our hypothesis that ðH½f � � SÞ=PnALpsðRÞ reduces the
extended Hilbert transform to an ordinary one

He
H½f � � S

Pn

� �
¼ H

H½f � � S

Pn

� �
:

By Hölder’s inequality, and then boundedness of the Hilbert transform on LpsðRÞ;

jjWðf � Ln½f �ÞjjLpðIÞp jjWPnjjLprðIÞ H
H½f � � S

Pn

� �����
����

����
����
LpsðIÞ

pCpsjjWPnjjLprðIÞ
H½f � � S

Pn

����
����

����
����
LpsðRÞ

;

where Cps is the norm of the Hilbert transform as an operator from LpsðRÞ to
LpsðRÞ: &

Proof of Theorem 3. Let zAC\½�1; 1�: Let G be a simple closed positively oriented
contour in C\ðð�N;�1�,½1;NÞÞ enclosing z: We have

f ðzÞ ¼ 1

2pi

Z
G

f ðsÞ
s � z

ds:

By deforming G onto ð�N;�1�,½1;NÞ; and using that f has limit 0 at N; we
obtain

f ðzÞ ¼ 1

2pi

Z �1

�N

þ
Z

N

1

� �
f ðsþÞ � f ðs�Þ

s � z
ds;

where f ðs7Þ denote boundary values from the upper and lower half-planes,
respectively. Let

gðsÞ ¼
1

2i
½f ðsþÞ � f ðs�Þ�; sAR\½�1; 1�;

0; sAð�1; 1Þ:

8<
:

By hypothesis gALpðRÞ and we see that
f ¼ H½g� in ð�1; 1Þ:
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We extend f to R\½�1; 1� by defining
f ¼ H½g�

there. (Equivalently, the Sokotkii–Plemelj formulas show that we can define f as the
average of its boundary values from the upper and lower half-planes there

f ðsÞ ¼ 1
2
ðf ðsþÞ þ f ðs�ÞÞ ¼ H½g�ðsÞ; sAR\½�1; 1�Þ:

Then

H½f � ¼ g

a.e. in R and this equation holds pointwise throughout ð�1; 1Þ: Fix e40: We apply
Theorem 1 with U � 1 and S � 0: We see that for jxjp1� e;

H
H½f �
Pn

� �
ðxÞ

����
���� ¼ 1

p

Z
R\½�1;1�

gðsÞ
PnðsÞðs � xÞ ds

�����
�����

p
1

pe

Z
R\½�1;1�

g

Pn

����
����ðsÞ ds

p
1

pe
jjgjjLpðR\½�1;1�Þ

1

Pn

����
����

����
����
LqðR\½�1;1�Þ

:

So

jjf � Ln½f �jjLN½�1þe;1�e�

p
1

pe
jjPnjjLN½�1þe;1�e�jjgjjLpðR\½�1;1�Þ

1

Pn

����
����

����
����
LqðR\½�1;1�Þ

:

Now the hypothesis gives the result. &
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